
BGEONICA

Model GEO-SR20 SECONDARY STANDARD PYRANOMETER WITH HEATER

GEO-SR20 is a solar radiation sensor of the highest category in the ISO 9060 classification system: "secondary standard". GEO-SR20 should be used where highest measurement accuracy is required.

Figure 1 GEO-SR20 'secondary standard' pyranometer

Figure 2 Overview of GEO-SR20 pyranometer:

(1) cable, (2) fixation of sun screen, (3) inner dome, (4) thermal sensor with black coating, (5) outer dome, (6) sun screen, (7) humidity indicator, (8) desiccant holder, (9) levelling feet, (10) bubble level, (11) connector

Introduction

GEO-SR20 measures the solar radiation received by a plane surface, in W/m^2 , from a 180° field of view angle. We recommend to use GEO-SR20 in particular in applications where highest accuracy is necessary. Specifications of GEO-SR20 are very good.

Directional response is also tested individually for each sensor and reported.

The "zero-offset A" specification of GEO-SR20 is significantly improved by using dome that is significantly smaller than that of earlier designs. Heating reduces sensitivity to fouling and reduces measurement errors cau-sed by early-morning dew deposition.

Demanding applications

GEO-SR20's low temperature-dependence makes it an ideal candidate for use under very cold and very hot conditions.

The temperature dependance of every individual instrument is tested and supplied as a second degree polynomial. This information can be used for further reduction of temperature dependance during postprocessing. The incorporated heater reduces measurement errors caused by early-morning dew deposition.

GEO-SR20's connector is truly specified for use in its entire rated operating condition.

Uncertainty evaluation

The uncertainty of a measurement (according to the "Guide to Expression of Uncertainty in Measurement" or GUM) with a pyranometer under outdoor conditions depends on many factors. In our manuals you can find gui-delines for uncertainty evaluation. We also provide spreadsheets to assist our users in this process. At the same time we wish to stress that measurement accuracy not only depends on instrument properties, but also on measurement conditions. A potentially very accurate instrument like GEO-SR20 will quickly underperform without a regular schedule of instrument maintenance and cleaning.

BGEONICA

NEW: use as sunshine duration sensor

WMO has recently approved of the "pyranometric method" to estimate sunshine duration from pyranometer measurements (Chapter 8 of the WMO Guide to Instruments and observation, 2008). This implies that GEO-SR20 may be used, in combination with appropriate software, to estimate sunshine duration (SD measurement included when using datalogger)

Suggested use

- PV monitoring and testing
- Reference instrument for comparison
- Extreme climates (arctic / desert)

Standards

Applicable instrument-classification standards are ISO 9060 and WMO-No.-8; "Guide to Meteorological Instruments and Methods of Observation". The calibration is according to ISO 9847. PV-related standards are ASTM E2848 and IEC 61724.

See also

- Alternative sensor: LP02 for lower accuracy measurements
- SR12 first class pyranometer for solar energy testing application.
- View our complete product range of solar sensors

Options

• Addicional cable length in multiples of 5 m (add to the standard 5m)

MORE INFORMATION

Datalogger Model METEODATA

METEODATA Datalogger with Integrated Comms (3G / GPRS, Modbus, Line, Radio or Satellite)

GEO-SR20 SPECIFICATIONS

• ISO classification Secondary standard pyranometer

285 to 3000 nm

 $7-25 \,\mu V/(W/m^2)$

< ± 1% (-10° to +40°C)

 $15 \,\mu V / (W/m^2)$

-40° to +80°C

0 to 100% 0 to 4000 W/m²

- WMO performance level High quality pyranometer (WMO-No.8, 7th edition)
- Sensor type Thermopile
- \cdot Dome type / material
- Spectral range
- Sensitivity
- · Sensitivity (nominal)
- Temperature range
- \cdot Humidity range
- \cdot Irradiance range
- Temperature dependence

< ± 0.4% (-30° to +50°C)
 with automatic temperature correction made by the METEODATA Datalogger, and based on the signal provided by the temperature sensor inside the pyranometer.

Double dome / High quality

glass, Schott N-BK7 or similar

- Calibration traceability
- Calibration uncertainty <1.2% (k=2)
- **Temperature sensor** 10 k Ω thermistor or Pt100

1 s (63% response)

≤±0.5% per year

 $\pm 1 \text{ W/m}^2$ or better

connector

 $1000W/m^{2}$

<±0.2% (100 to 1000 W/m²)

 \leq ± 10 W/m² at any zenith and azimuthal angles at direct beam of

 $< \pm 0.2\%$ (0° to 90° at 1000W/m²)

12 VDC, 1.5 W

to WRR

- Heater
- **Response time** 3 s (95% response)
- Non linearity
- Non stability
- Directional response
- Tilt error
- Zero offset: response < 5 W/m² unventilated to 200 W/m² net < 2.5 W/m² ventilated with VU01 thermal radiation
- Zero offset: response < ±2 W/m²
 5 deg C/hr change in ambient temperature
- Resolution
- Output signal
 Analogue voltage 0 to 60 mV
- Cable Standard 5 m
- Calibration certificate Individual WRR traceable calibration
 - certificate. With certificates for individual testing of directional response and

cable with

of directional response an temperature response.

• Sensor resistance range 100 to 200 Ω